
 

  
I.  INTRODUCTION 

 

Currently more than 80% of the world energy supply 
comes from fossil fuels, resulting in strong ecological 
and environmental impacts. Such factors as the 
exhaustion of reserves and resources, air pollution and 
modification of the atmospheric composition, impacts on 
climate and on human health, are now of primary 
importance. It is a wide opinion that hydrogen has a great 
role to play as an energy carrier in the future energy 
sector. 

The most important reasons to transfer from the 
fossil fuel-based economy to hydrogen-based economy 
are as follows. The first one is the diversification of the 
energy sources and the reduction of dependency on fossil 
fuels, since hydrogen can be produced from any primary 
energy source. The second reason is the reduction of the 
environmental impact of the energy system. Most of the 
anthropogenic impacts on the environment come from 
the combustion of fossil fuels in the industrial, domestic 
and transport sectors. Hydrogen as a carbon-free energy 
carrier would reduce most of the related environmental 

problems. The third reason is the control of acceptable 
costs and the hope of stable prices over time. At present 
the supply of energy at reasonable and stable prices is not 
ensured at all by the producers of crude oil or natural gas. 
Hydrogen facilitates the diversification of the sources 
and would contribute to the reliability, stability and 
security of the energy supplies. 
 At present the most important energy carriers are 
fossil-originated solids (coal), liquids (gasoline, diesel oil, 
jet fuel, ethanol, methanol, liquefied gases), gases 
(natural gas, synthetic gas), and electricity. Hydrogen is 
very seldom used as an energy carrier, except as pure 
liquid for rocket propulsion in the space industry. 
However, for decades hydrogen has been important for 
the chemical industry as a source material for the 
production of raw chemicals (e.g. methanol and 
ammonia), hydrogenation agents in oil refinery industry 
and reducing gases in steel industry. 
 Several processes have been developed for 
producing hydrogen mainly from fossil fuels and to some 
extent from water. Hydrogen can be produced from fossil 
fuels (or biomass and biomass-derived fuels) using such 
processes as steam reforming (mainly of natural gas), 
partial oxidation, auto-thermal reforming, and coal 
gasification. From any primary energy source (nuclear, 
wind, solar) converted into electricity hydrogen can be 
produced by the electrolysis of water. Hydrogen can also 
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 In the second term from 2011 to 2020, currently 
running, an increased production of hydrogen, still from 
fossil fuels, should be obtained. However, an increased 
production of hydrogen from renewable energy sources 
will be fostered. Owing to the increased availability of 
hydrogen the use of hydrogen as a fuel in modified 
conventional combustion engines and (or) fuel-cell 
systems in cars and trucks is expected. Since the majority 
of hydrogen is to be produced from fossil fuel, large 
demonstration projects for the capture and storage of CO2, 
which is a by-product of hydrogen production from fossil 
fuel are foreseen.  
 In the next term, beyond 2020 a growing production 
of hydrogen will accompany an increasing demand of 
consumers for clean energy supply. Both electricity and 
hydrogen will progressively replace the outdated carbon 
energy system. Renewable and nuclear energy sources 
will gradually substitute fossil fuels. In parallel at that 
time the hydrogen network will expand and become 
interconnected with the electricity grid. 
 One of the most advanced assessments of the present 
hydrogen policy needs has been made by the U.S. 
Department of Energy (DOE) [3]. The aim of this policy 
is to identify research pathways leading to hydrogen 
production technologies that produce near-zero net 
greenhouse gas emissions and use renewable energy 
sources, nuclear energy, and coal (with carbon dioxide 
capture and storage).  
 To analyze the future of hydrogen technology 
development it is convenient to divide the facilities for 
hydrogen production in 3 scales: small, medium and 
large. Small-scale facilities, called also distributed would 
produce from 100 to 1500 kilograms (kg) of hydrogen 
per day at fueling stations. Medium-scale (also known as 
semi-central or city-gate) facilities would produce from 
1500 to 50000 kg per day on the outskirts of cities. The 
largest (central) facilities would produce more than 
50000 kg of hydrogen per day. 
 According to DOE the current hydrogen production 
cost targets are $3.00 per kilogram of hydrogen at fueling 
stations and $2.00 per kg of hydrogen at a central facility 
(also known as the “plant” gate). (A kilogram of 

hydrogen is approximately equal to a gallon (3.79 litres) 
of gasoline equivalent (gge) on an energy content basis. 
At present the cost of production of a gallon of gasoline 
is about $2 in the USA (excluding delivery, storage and 
tax). 
 Centralized natural gas reforming is not being 
pursued because it is already an established commercial 
technology with a cost of $2.00 per kg of hydrogen 
(currently most of the worldwide hydrogen production, 
more than 90%, originates from the large-scale steam 
reforming of natural gas). However, due to growing 
hydrogen demand the large scale (centralized) hydrogen 
production facilities will be needed. DOE is pursuing 
central production of hydrogen from a wide diversity of 
feedstocks, including nuclear energy and renewable 
sources. Hydrogen production technologies will be 
directed towards coal gasification with carbon 
sequestration to reduce or eliminate greenhouse gas 
emissions, biomass gasification, next generation nuclear 
energy high temperature sulphur-iodine thermochemical 
process, next generation nuclear energy high temperature 
steam electrolysis, current nuclear energy using standard 
electrolysis, and wind electrolysis. 
 Distributed hydrogen production (i.e., production of 
hydrogen at the point of use) may be the most viable 
approach for introducing hydrogen as an energy carrier 
because it does not require a substantial transport and 
delivery infrastructure or large capital investments as 
high as those needed for large central production plants. 
In this case such technologies as natural gas reforming, 
electrolysis, reforming of ethanol and methanol (both 
from biomass) are pursued. 
 Table II shows DOE’s envisage of hydrogen 
production targets in the distributed and central scales for 
the period 2011 - 2020. According to it the ultimate 
hydrogen production cost target is $1 - $2 per kilogram 
of hydrogen. DOE predicts that such a cost target will be 
difficult to achieve for technologies based on solar 
thermochemical, photoelectrochemical and biological 
processes. 
 Recently another technology has been proposed for 
distributed hydrogen production [4, 5]. This technology 

TABLE II 
DOE’S ENVISAGE OF HYDROGEN PRODUCTION TARGETS IN DISTRIBUTED AND CENTRAL SCALES FOR THE PERIOD 2011 – 2020 [3] 

 

 
$/kg 

(production costs only) 
2011 Status 

Target 
2015 Target 2020 Target Ultimate Production Target 

D
is

tri
bu

te
d Electrolysis from grid electricity $4.20 $3.90 $2.30 

$1-$2 

Bio-derived Liquids 
(based on ethanol reforming case) 

$6.60 $5.90 $2.30 

C
en

tra
l 

Electrolysis from renewable electricity $4.10 $3.00 $2.00 

Biomass gasification $2.20 $2.10 $2.00 

Solar thermochemical NA $14. 80 $3.70 

Photoelectrochemical NA $17.30 $5.70 

Biological NA NA $9.20 
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uses thermal and non-thermal plasmas for reforming 
gaseous and liquid compounds containing hydrogen. 
They can originate from fossil fuels and biomass. 
Unfortunately, DOE’s scenario does not predict any role 
for the plasma technology in the future roadmap towards 
the hydrogen-oriented world economy. 
 This paper is a short review of the plasma methods 
proposed for hydrogen production mainly from gaseous 
fuels. In this review the plasma methods of gaseous fuels 
processing for hydrogen production are described and 
critically evaluated from the view point of hydrogen 
production efficiency defined by such parameters as the 
hydrogen production rate (g(H2)/h), and energy yield 
(g(H2)/(kWh)), precursor conversion degree (%) and 
volume hydrogen concentration in the outgas (%). 
 As mentioned, plasmas are of increasing interest for 
the small-scale energy efficient production of hydrogen 
also from liquid fuels [5]. Alcohols, for example, can 
provide significant advantages when used as a liquid fuel 
for hydrogen generation due to a high hydrogen to 
carbon ratio, low boiling point, low temperature for 
conversion to hydrogen, no sulphur content, high water 
solubility and biodegradability [6]. The reforming of 
alcohols for producing hydrogen has been investigated in 
a wide variety of plasmas produced in dielectric barrier 
discharges [7], surface wave discharges [8], AC 
discharges [9-11], microwave discharges [12, 13], glow 
discharges [14], silent discharges [15, 16], corona 
discharges [17, 18], gliding arcs [19, 20], plasmatron arc 
[20], and discharges in liquids [19]. The major advantage 
of using these plasmas is that most of them have 
sufficiently high temperatures to vaporize the alcohols 
inside the plasma or to vaporize them prior to feeding 
them into the plasma. The cost of generating such high 
temperature plasmas seems to be competitive to that of 
creating the high operating temperatures for hydrogen 
production in thermal/catalytic steam reforming 
processing [21]. The growing interest in using liquid 
fuels for the hydrogen production by plasmas has 
resulted in numerous articles. This subject has become so 
broad that it demands a separate comprehensive 

discussion. 
 The majority of plasmas proposed for hydrogen 
production from gaseous fuels are generated by: electron 
beam, dielectric-barrier discharge, gliding arc, 
plasmatron arc and microwave discharge. Table III 
shows the energy yields of hydrogen production from 
methane for different plasma methods. Methane is the 
most popular gaseous fuel used in the plasma production 
of hydrogen. For comparison, information on the energy 
yield of hydrogen production by the conventional steam 
reforming of methane (with a catalyst), water electrolysis, 
as well as dielectric barrier discharge and gliding arc, 
both employing alcohols as fuels, is given in Table III. 
 The conventional steam reforming method of 
producing hydrogen from natural gas (consisting mainly 
of methane) are well developed industrial technology and 
account for over 95% of all hydrogen produced in the 
USA and about 50% globally [22]. According to the U.S. 
Department of Energy (2013, [3], Table III) the energy 
yield of hydrogen production using this technology is 
60 g(H2)/kWh, which is equivalent to a cost of $2 per kg 
of hydrogen (assuming that pricing of 1 kWh electric 
energy is $0.12). The energy yield of hydrogen 
production of 60 g(H2)/kWh is a target set by U.S. DOE 
at 2020 for other competitive methods. It is worthy of 
note that the thermodynamic limit of the energy yields in 
methane reforming, wet methane reforming and dry 
methane reforming are 192 g(H2)/kWh, 105 g(H2)/kWh 
and 58 g(H2)/kWh, respectively. As Table III shows 
water electrolysis does not reach the target of 
60 g(H2)/kWh at present [3]. From the plasma methods 
listed in Table III the plasma generated by a plasmatron 
arc and supported by a catalyst [23] is most advanced 
technology of hydrogen production from methane on an 
energy yield basis (225 g(H2)/kWh versus the 2020 target 
of 60 g(H2)/kWh). The gliding arc processing methane 
[24] offers yield similar to that of water electrolysis 
(40 g(H2)/kWh). However, when gliding arc was used for 
producing hydrogen from liquid fuel (alcohol) the energy 
yield was impressive (176 g(H2)/kWh, [25]). This clearly 
shows that plasma reforming of liquid fuels is attractive 

TABLE III 
CONVENTIONAL AND PLASMA METHODS OF H2 PRODUCTION. COMPARISON OF THE ENERGY YIELDS OF HYDROGEN PRODUCTION. 

 

Production method Initial composition 
Energy yield 

Reference 
NL(H2)/kWh g(H2)/kWh 

Conventional steam reforming of 
methane 
(catalyst) 

CH4 +H2O+ air 672 
60 

Established industrial 
process 

K. Randolph, U.S. DOE, 2013, [3] 

Water electrolysis H2O 224 - 448 20 - 40 K. Randolph, U.S. DOE, 2013, [3] 
Electron beam radiolysis CH4+H2O 40 3.6 T. Kappes et al., 2002, [26] 

Dielectric barrier discharge CH4+air 75 6.7 M. Heintze, B. Pietruszka, 2004, [27] 

Dielectric barrier discharge 
CH4 +CO2 / H2O 

CH3OH+CO2 / H2O 
CH3CH2OH+CO2 / H2O 

5.6 
37 
75 

0.5 
3.3 
6.7 

B. Sarmiento et al., 2007, [7] 

Dielectric barrier discharge CH4 +CO2 58 5.2 M. Dors et al., 2012, [28] 
Gliding arc CH4+H2O+air 448 40 J.M. Cormie, I. Rusu, 2001, [24] 

Gliding arc (alcohol spray) Alcohols+ Ar 2100 176 R. Burlica et al., 2011, [25] 
Plasmatron with catalyst CH4+H2O+air 2520 225 L. Bromberg et al., 2000, [23] 

Metal-cylinder-based MPS CH4 +CO2+H2O 480 42.9 M. Jasiński et al., 2013, 4.5 kW, [29] 
Waveguide supplied resonant-
cavity-based MPS with catalyst CH4+H2O 703 62.8 M. Jasiński et al., 2014, 2.5 kW,[30] 
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from the point of view of the energy efficiency. Both 
electron beam radiolysis [26] and dielectric barrier 
discharge [7, 27, 28] are much less energy efficient. 
Promising technology for hydrogen production seems to 
be microwave plasma. It was shown [29] that the use of 
the so-called waveguide-supplied metal-cylinder-based 
microwave plasma source resulted in a hydrogen 
production energy yield of 42.9 g(H2)/kWh. A higher 
energy yield of 62.8 g(H2)/kWh, i.e. above the DOE’s 
2020 target was obtained in a waveguide supplied 
resonant-cavity-based microwave plasma source (MPS) 
with a support of catalyst [30]. 
 Recently developed microwave plasma sources 
(MPSs) operated at atmospheric pressure exhibit a high 
potential for hydrogen production via pyrolysis, wet and 
dry reforming of various gaseous (natural gas, methane) 
and liquid fuels (gasoline, heavy oils and biofuels). They 
provide a plasma environment in which the heavy 
particles (atoms and molecules) have temperatures of 
2000-6000K while the electron temperature reaches 
10000K. Besides, the plasma contains ions and reactive 
radicals (H, OH, and O) which enhance conversion of 
hydrocarbon containing compounds into hydrogen. The 
wide range of the offered gas plasma temperatures 
enables choosing the temperature optimum for a given 
reforming path. This results in higher selectivity of 
hydrogen production. The other advantages of the use of 
plasma for hydrogen production are the compactness of 
the plasma system due to high energy density of the 

plasma and fast response time achieved by being 
powered by electricity. 
 The microwave plasmas operating at atmospheric 
pressure can be induced by several types of microwave 
field applicators, which may be classified as follows 
[31]:  
(A)  Surface-wave-discharge MPSs: 
 a. coaxial-line-supplied, called surfatrons, 
 b. waveguide-supplied, called surfaguides. 
(B)  Nozzle-type MPSs: 
 a. coaxial-line-supplied coaxial-line-based (low gas 

flow rate, several NL/min), 
 b. waveguide-supplied coaxial-line-based (low and 

high flow rates (gas swirl, several hundred 
NL/min). 

(C)  Nozzleless MPSs: 
 a. waveguide-supplied coaxial-line-based (with or 

without an inner dielectric tube), 
 b. waveguide-supplied metal-cylinder-based (with 

or without an inner dielectric tube), 
 c. waveguide-supplied resonant-cavity-based. 
(D)  Plasma-sheet MPSs: 
 a. coaxial-line-supplied strip-line-based, 
 b. waveguide-supplied. 
(E)  Microwave microplasma sources (MmPSs): 
 a. antenna-based, 
 b. coaxial-line-based. 
(F)  Inductively coupled MPSs. 
 

MPS – Microwave Plasma Source

Microwave plasma system for hydrogen production

Microwave plasma sources
(MPSs)

•surface-wa ve-discharge MPSs:
coax ial-line-supplied (surfatron)
wa veguide-supplied (surfaguide)

• nozzle-type MPSs:
coax ial-line-supplied coaxia l-
l ine-based
wa veguide-supplied coa xial-l ine-
based

• nozzleless MPSs:
wa veguide-supplied coa xial-l ine-
based
wa veguide-supplied metal-
cyl inder-based
wa veguide-supplied resonant-
cavity -based

• plasma-sheet MPSs:
coax ial-l ine-supplied strip-l ine-
based
wa veguide-supplied

• MPSs for microdischarges
(antenna- and coaxial-l ine-based)

Coaxial cable

Rectangular waveguide

 
Fig. 1.  Scheme of a microwave plasma system for hydrogen production. 
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that the energy yield of hydrogen production is higher for 
the combined steam reforming and it equals 
42 g(H2)/kWh at 3.5 kW of absorbed microwave power. 
Although this value is lower than the DOE’s target of 
60 g(H2)/kWh, some improvements of the microwave 
source and technology to increase the energetic 
parameters are still possible. One possibility is using a 
catalyst which, as it was proven in [23, 30] resulted in 
substantial increase of the hydrogen production yield. 
 
 

II.  CONCLUSION 

 
As shown, the economic analysis of the U.S. 

Department of Energy has determined tough conditions 
for hydrogen production technologies to be accepted in 
the distributed and central scales by the market in 2020. 
The most important requirement which has to be met by 
the hydrogen producers in the distributed scale is the 
energy yield of 60 g(H2)/kWh (or 2US$ per kg of 
hydrogen) in 2020. The DOE expects that such 
technologies as natural gas reforming, electrolysis from 
grid electricity, reforming of ethanol and methanol (both 
from biomass) are capable of targeting 60 g(H2)/kWh in 
2020. Plasma technologies have not been mentioned by 
the DOE’ report as an economically competitive 
technology for hydrogen production. 

At present some plasma technologies have met the 
DOE’s energy yield requirement foreseen for 2020. In 
the case of distributed hydrogen production from gaseous 
fuels they are: gliding arc, plasmatron arc with catalyst 
and microwave discharges (Table III). However, higher 
expectations are placed on these technologies when 
liquid fuels are used as a source of hydrogen.  

Although the use of catalyst resulted in substantial 
increase of the hydrogen production yield (Table III), 
opinions on catalyst potential to be commercially 
attractive in supporting the plasma production of 
hydrogen are divided. Some claim unpracticality of using 
catalysts which are expensive and impurity vulnerable.  

Other matters which have to be considered when 
assessing the usefulness of plasma technology for the 
commercial production of hydrogen are the investment 
and running costs. Generally there is lack of such 
information. A relatively well-developed cost model of 

hydrogen production was presented for the plasmatron 
technology in [23]. The conclusion from this cost 
assessment is that although the plasmatron method is 
very efficient in hydrogen production, the investment and 
running costs are relatively high.  

Finally, our investigation showed that the 
microwave plasma method (using either the metal-
cylinder-based or resonant-cavity-based MPS) has a 
potential to become attractive in terms of the 
performance and hydrogen production rate and energy 
yield. At present the achieved energy yield of hydrogen 
production from methane is close to the DOE’s 2020 
target of 60 g(H2)/kWh. Our preliminary experiment on 
hydrogen generation from a mixture of nitrogen and 
ethanol by the metal-cylinder-based MPS showed 
potential of the microwave discharges for hydrogen 
production from liquid fuels (the energy yield was 
several tens g(H2)/kWh at a relatively low ethanol 
concentration). 

Summarizing, at present, i.e. about 5 years before a 
milestone year 2020 determined by the U.S. DOE, some 
plasma methods for small-scale (distributed) hydrogen 
production from gaseous fuels seem to cross the energy 
yield target of 60 g(H2)/kWh. However these methods 
have to meet the challenge of the high hydrogen 
production rate, high reliability and low investment cost. 
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